Lasers suffer from long-term pointing instabilities due to environmental and other influences. In addition, UV femtosecond pulse beams, as the front-end laser for SwissFEL, damage relatively fast multiple optics in the beam path. This beam pointing and beam quality degradation is a problem in many lasers and laser applications in science and industry. We studied feasibility of Bayesian optimization method from Machine Learning to optimize the laser beam in those multi-dimensional aspects in a fast and reliable way.
Project Partners:
Prof. Dr. Bojan Resan (FHNW, laser system development)
Dr. Alexandre Trisorio (PSI, laser and accelerator physics)
Dr. Alisa Rupenyan (ETHZ/Inspire, Bayesian optimization in Machine Learning)
Romain Carreto (TLD Photonics AG, laser control development)
VIVIOR AG, Anja Starke
Swiss Queen GmbH, Michela Mastropietro
CEDES AG, Martin Hardegger
HUBER+SUHNER AG, Matthias Bleibler
Thoratec Switzerland GmbH, Stephan Rupp
Swisens AG, Erny Niederberger
AAA Assemblage Acoustique Azau, Csaba Azau
No-Touch Robotics GmbH, Marcel Schuck
Vario-optics AG, Nikolaus Flöry
IngStaff GmbH, Mehmet Demirel
Oryl Photonics SA, Orly Tarun
ZHAW, Dirk Penner
FH OST, Oliver Fähnle
xirrus GmbH, Lukas Schuler
SUSS MicroOptics SA, Toralf Scharf
Synova SA, Jeremie Diboine
Infrascreen, Benoit de Combaud
RhySearch Optical Coating, Heidi Thomé
XENLUX AG, Philippe Morel
Photonics Booster
c/o Swissmem
Pfingstweidstrasse 102
Postfach
CH-8037 Zürich
T +41 44 384 42 10